The measurement

How to measure Cp?

- Principle : apply P, read T and time
- adiabatic : isolated sample and pt by pt $C = \frac{\Delta Q}{\Delta T}$ quasi-adiabatic, continuous heating P = C dT/dt
- relaxation : heat pulse, thermal link to T bath large relaxation, dual slope, ...

21/09/2011

very demanding T measurements !!

T = 9.104785DT/T ~ 10^{-3}

DC/C ~ 10-3

and TIME

calibrations of thermometers is a nightmare !! and fitting procedure

Thermodynamic thermometers

21/09/2011

65

Thermometers

What is a good thermometer ? ø primary / secondary @ accuracy resolution/sensitivity reproducibility easy to use time response

Thermometers actually used in low temperature laboratory

21/09/2011

ADIABATIC

heat pulse and isolated sample
 Excellent precision and accuracy

λ transition in space shuttle

but

method point by point (tenuous)

how to cool the sample ?

limited to large samples
 (parasitic non-adiabaticity)

Apparatus used for calorimetric measurements in the adiabatic demagnetization range

Apparatus used for calorimetric measurements in the adiabatic demagnetization range

Prof. N.E.Phillips University of California BERKELEY

100mK-40K

accuracy a few % $\Delta C/C$ a few 10^{-3}

100mg-1g Heavy Fermion

21/09/2011

Chichiliane

QUASI-ADIABATIC

Prof. A. Junod University of Geneva

heat pulse continuous heating and still isolated sample

21/09/2011

QUASI-ADIABATIC

Prof. A. Junod University of Geneva

heat pulse continuous heating and still isolated sample

> diation shields at still a few 10⁻⁷W with asured via hermocouples novoltmeter

Δ**Τ**:=0

ΔT=0

QUASI-ADIABATIC

Prof. A. Junod University of Geneva

21/09/2011

QUASI-ADIABATIC in dilution range

R. Calemczuk CEA-grenoble

∆T measured via Au:Fe thermocouples and SQUID !!

SQUID + Chopper = $1-2 \text{ pA/(Hz)}^{1/2}$

CryoCourse Chichiliane

71

QUASI-ADIABATIC in dilution range

R. Calemczuk CEA-grenoble

CryoCourse Chichiliane

21/09/2011

QUASI-ADIABATIC in dilution range

R. Calemczuk CEA-grenoble

1-10% of 10mg Cu BUT !! no calibration of S (null detector) $\Delta T = 0$ therefore thermometer in compensated area

21/09/2011

RELAXATIONS Methods heat pulse or steplike, heat link to thermal bath at T_b

21/09/2011

PPMS Quantum Design : ⁴He and ³He

21/09/2011

Set-up at ultra-low T (10mk-1K)

J.P. Brison CEA-grenoble

21/09/2011

(Dis)Advantages,

- popular, reliable, and widely used at low T
 extended down to below 10mK (J.P. Brison)
 good accuracy (5%), but not excellent resolution
 mass down to a fraction of a mg
 relaxation time >= 1s
- Op can vary by orders of magnitude between the interesting T-range, <u>so does relaxation time</u>
- Point by point, long and tenuous, 1pt at 100K=20mns

AuCrS₂ : antiferromagnetic + structural

Courtesy: F. levy CNRS-grenoble

21/09/2011

Options

define internal and external time constants
choose duration time vs T_{int} and T_{ext}
fitting procedure : introduce <u>constrains</u>
Large relaxations and local dT/dt (A. Demuer) faster, larger current,...

Dual Slope method (dynamic, no calibration of к)

Modulation (alternative) ac-power

21/09/2011

Characteristics

Iock-in detection, filters, noise rejection (true for all modulation technics)

100 nanogram < m < a few milligram
continuous: during H and/or T sweeps
easy to extend a differential configuration
extrem conditions: 45T-DC, pulsed 60T, 15Gpa, 10kHz

Schematic

transformer at room T: a few 0.1 mK/(Hz)^{1/2}
transformer at 4K: a few 10 μK/(Hz)^{1/2}
Squid detection: a few 0.1 μK/(Hz)^{1/2}

21/09/2011